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Abstract

Let S, be polynomials orthogonal with respect to the inner product
(f7g)s:/0 fgduo+7~/0 1'q duy,

where dpg = x*e™* dx, dp, =2 dx+ Mo: with o> — 1, ¢<0, M>0, and 7>0. A
strong asymptotic on (0, 00), a Mehler—Heine type formula, a Plancherel-Rotach type
exterior asymptotic as well as an upper estimate for .S, are obtained. As a consequence, we give
asymptotic results for the zeros and critical points of S, and the distribution of contracted
zeros. Some numerical examples are shown.
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1. Introduction

The asymptotic behaviour of the polynomials and their zeros is one of the central
problems of the theory of orthogonal polynomials.

In this paper we are concerned with the asymptotic properties of Sobolev
orthogonal polynomials, that is, polynomials orthogonal with respect to an inner
product involving derivatives. More precisely, we consider the Sobolev inner
product:

<fpg>5=/0 “fgduoH/O fd dy, (11)

where

o1 e~

duy = x*e ¥dx, du, = dx + Mée

x—=¢
with o> — 1, ¢<0, M >0, and 1>0. The pair of measures (u, ;) constitutes one
of the so-called coherent pairs.

The goal of coherence is the fact we can establish a relation between two
consecutive Sobolev orthogonal polynomials and two consecutive orthogonal
polynomials associated with the first measure p,. This relation plays an important
role in the study of Sobolev polynomials and was one of the properties that Iserles
et al. looked for in the new polynomials that they introduced in [4] as the solution to
an isoperimetric problem. Moreover, the existence of this kind of relation was the
reason for the introduction of the concept of coherence. Although this finite relation
between Sobolev polynomials and standard orthogonal polynomials is an important
feature of coherence, it is not exclusive of coherent pairs. This type of relation
provides another advantage: if we consider the inner product of the form

(105 = [ fadu+ [ 1 du,

both measures having absolutely continuous part non-zero, then if we have an
algebraic relation between Sobolev polynomials and standard orthogonal poly-
nomials, we can construct stable numerical algorithms to compute Sobolev
orthogonal polynomials of high degrees. Of course, it is possible to study Sobolev
orthogonal polynomials without these algebraic relations (see, for example, [7,8])
and very interesting analytic results can be obtained, but it is enough difficult to
generate Sobolev polynomials of high degrees in a stable form. An important first
step in this direction has been given in [3].

The complete characterization of all coherent pairs of measures was done in [9]. In
the case of unbounded support measures, there are two general families of
polynomials related with Laguerre polynomials. The first one, usually named as type
I, corresponds to the pair (ug, ;) where either duy(x) = (x — &)x* e ¥ dx,
du(x) = x" e dx with <0 and >0 or duy(x) = e ¥ dx + M dy(x) with M >0
and du,(x) = e~ dx. The second one (type II) is the pair described in (1.1).
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The asymptotic behaviour of Sobolev polynomials for coherent pairs of type I
has been widely studied (see, for instance, [6,11,12]) while, with respect to
type II, only the comparative asymptotics has been treated (see [11]). The aim
of this paper is to complete the study of asymptotic properties for polynomials
of type II.

The paper is organized as follows. Some properties of classical Laguerre
polynomials are exposed in this section. In Section 2, polynomials orthogonal
with respect to the measure u; are analyzed. The interest of these polynomials
comes from the fact that the absolutely continuous part of y; is a rational
perturbation of the Laguerre weight. Section 3 is dedicated to asymptotics of
Sobolev polynomials: a strong asymptotic on (0,+00), a Mehler—Heine type
formula and Plancherel-Rotach type exterior asymptotics are derived.
Moreover, as a consequence, asymptotics of zeros and critical points of
Sobolev polynomials as well as the distribution of contracted zeros and
the nth root asymptotic are obtained. Also, some numerical examples are
presented. Finally, in the last section an upper estimate for the Sobolev polynomials
is given.

Consider the Sobolev inner product (1.1). Denote by {S,}, and {7,}, the
sequences of polynomials orthogonal with respect to (1.1) and the measure p,
respectively, normalized by the condition that S, and 7, have the same leading

coefficient as the classical Laguerre polynomial Lﬁ,“)(x) = %x” + ---. Observe that

To = S() = L(()“), and Sl = L(la).
Throughout this paper the following notation will be used:

LR = /O (L0 o), ITll2, = /0 (T())? diy (x)
and

||Sn||§ - (S,,, Sn)S'

Many of the properties of Laguerre polynomials can be seen, for example,
in the classical book of Szegd [13]. For the reference, we summarize in the
following proposition some of them which play an important role in
this paper:

Proposition 1.1. The following properties hold for Laguerre polynomials:
(a) [13, formula (5.1.1)]:

. , r 1
||L£’fX)||i(J = / (Ln“)(x))z e dx — %’ a> — 1. (1.2)
0 !
(b) [13, formula (5.1.13)]:
LY() = L () = L7 (), aeR (1.3)
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(c) Three term recurrence relation [13, formula (5.1.10)]:

XL (%) = =(n+ DL () + 20+ 2+ DL () = (4 2) L7 (),

n+1 n—1

(1.4)

L(fl) (x)=0 and Lgx)(x) =1.

(d) [13, formula (5.1.14)]:

d o o+1
L) = L5 ).

@)
(e) The sequence {nL/z,(,Y/l . 1s uniformly bounded on compact subsets of (0,+o0)

([13, Theorem (8.22.1)]).
(f) It holds

(2)
Ln/(zx ) _ vy J(23/nx) + O(n3%) (1.5)

uniformly on compact subsets of (0,+00) where J, is the Bessel function
([13, Section 8.22 and formula (1.71.7)]).
(g) Mehler—Heine formula [13, Theorem 8.1.3]:

(o)
lim Lo (/")
n— oo n*

= x"*2J,(2V/x) (1.6)

uniformly on compact subsets of C.
(h) Ratio asymptotics for scaled Laguerre polynomials:

(@)
fim Loo1 (R ! (1.7)

n=>w 19 () o((x=2)/2)
uniformly on compact subsets of C\[0,4], where ¢ is the conformal mapping of
C\[—1, 1] onto the exterior of the unit circle given by

p(x)=x+vVxt—1, xeC\[-1,1], (1.8)
with Vx* — 1>0 when x> 1.

Formula (1.7) can be deduced from (4.3.5) in [14] taking into account
that the nth orthonormal Laguerre polynomial with positive leading coefficient is
@
) = (-1,
We want to remark that from (1.6) and (1.7) it can be shown, respectively,
that

i LG/ (1 47)

n— oo n*

= x"*2J,(2V/x), (1.9)
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holds uniformly on compact subsets of C and uniformly on je NuU {0} and

LY ((n+j)x) _ I
e [Pty e((x=2)/2) (1.10)

holds uniformly on compact subsets of C\[0,4] and uniformly on je NuU{0}.

2. The orthogonal polynomials 7;, and the Sobolev orthogonal polynomials S,

Polynomials 7, have an independent interest as orthogonal with respect to a
measure whose absolutely continuous component is a rational modification of the
Laguerre weight function x**!'e™ on [0, o0 ) and possibly with a mass point (a Dirac
delta) at £<0. In fact, we use the following results established in [11].

Lemma 2.1. (a) [11, Lemma 4.1]. The polynomials T, satisfy the relation

Tu(x) = L (x) — e, LV (x), 00, (2.1)
where
T 2
ep = I (;”“21 , (2.2)
[ La"[,

(b) Relation (2.1) can be expressed as
T,(x) = LY (x) - d, LV (x), n>0, (2.3)

where d, = ¢, — 1, n=0.
(c) [11, Lemma 4.4). It holds

lim V7 d, = d(¢) = { \/\%—5 Z: Z>o(?’ (2.4)
and therefore lim,, ¢, = 1. In particular,
® Jf¢=0and M>0, we get
nlingo nd, =o+1. (2.5)

® [fé=M =0, then d, = 0 and therefore ¢, = 1, for all n.
We have the following explicit relation between Sobolev orthogonal polynomials

and Laguerre polynomials (see [11, Lemma 4.7, 4] in a more general framework):

Lemma 2.2. It holds
L;a)(x) - Cn—lqua_)] (X) = Sn(x) - an—lSn—l (x)y nz 1, (26)
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2
(2

where a, = ¢, TS
nlls

. Moreover (see [11, Lemma 4.10]),

1
m a,=a=——+——7"——,
n ?((4+2)/2)

where ¢ is defined by (1.8).

(2.7)

It is clear from (2.6) that we can compute S, in a recursive way, and we can give
even an explicit expression for S, in terms of Laguerre polynomials and the
sequences {c,} and {a,}. Thus, if we want to compute the polynomials S, calculate
its zeros or realize any numerical experiment with these polynomials, we have to
compute effectively the sequence {c,} that appears in relation (2.1) and the sequence
{an}.

First, we obtain a nonlinear recurrence relation for {c,}.

Proposition 2.3. It holds, for n=0,

2n—|—2+oc—£_n—|—l+oc

L 2.8
Cn+1 n+1 (n—l—l)c,,’ ( )
with
o0 ,C«Jrle—x
@ :fo Yo dx+ M

I'(e+1)

Proof. We express the polynomial —;ﬁ Lffﬂ)(x) in terms of the basis {7;}") and
we obtain

x—éL(H_l) n+1+o

Thr1lm (x) = Thy1(x) —an(X), n=0. (2.9)

Then, multiplying (2.9) by Lg,”l)(x) and integrating with respect to the measure
x*Tle=*dx on [0, c0), we can derive the result using formulas (1.4) and (2.1). O

The sequence {c,} also plays an important role for the polynomials {7,} from
computational point of view as well as to obtain asymptotic properties.

It is well known (see [2]) that zeros of polynomials 7, are the eigenvalues of the
symmetric tridiagonal Jacobi matrix, whose entries are the coefficients of the three
term recurrence relation for the orthonormal polynomials ¢, with positive leading
coefficient:

Xtp(x) = [y (%) 4+ yptu(x) + Butu-1(x), n=0,

with 71 (x) = 0, fo(x) = || To|[;".
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Expanding the polynomials x7),(x) in the basis {7} }, we get
)1

n+1+o

n

XTu(x) = — (n+ DTy (x) + <ncn +

— (n+0a) n To—1(x), n=0,
Cn—1

with 7_;(x) = 0 and Ty(x) = 1. Since #,(x) = (—1)" T”(T) , straightforward compu-
!

(1Tl
tations show that

1
n_ and yn:ncn+4n+a+ + &
Cn—1 Cn

B, =/nn+a)

Now, we present several analytic properties of the polynomials 7,.

Proposition 2.4. For o> — 1, the following properties hold.

(@) The sequence {nT/Z—(jL}n is uniformly bounded on compact subsets of (0,+00).
(b) Asymptotics on (0,+00) for Ty if £<0,

Tu(x _ _

) o)+ 0
and, if £ =0,

T,(x o _

) e () + O,

Both identities hold uniformly on compact subsets of (0,+o0).
(c) Mehler—Heine type formula for T,: if <0,

. Ty(x/(n+j —(a
tim TI0ED) g) o0, 2),

if E=0and M >0,

n— oo n
and, if E= M =0,

n— oo n

= _x_a/ZJchrZ (2\/)_5) )

= x"2J,(2v/x).

All the limits hold uniformly on compact subsets of C and uniformly on je N U {0},
where d(&) is given by (2.4).
(d) Plancherel-Rotach type exterior asymptotics for T,:
T . N
e u%fflL])).C) =l+e <x )
" Ly ((n+j)x) 2
uniformly on compact subsets of C\|0, 4] and uniformly on je N U {0}.
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Proof. If £ = M = 0 all the results are true because of T,(x) = LY (x), for all n.
(a) We divide (2.3) by n*/>~1/4, Then, using (2.4) and Proposition 1.1(e) the result
follows.
(b) If ¢<0 we divide (2.3) by n*/? and using again Proposition 1.1(e) and (2.4)
we get

T.(x) L (x)

L ra(r] Gz LD ()
2 g2 7(n—1)1/4 an\ —, (n— 1)1/
L (x)

_ ~1/4
== +O0(n/").

Thus, the result follows from (1.5). On the other hand, if £ =0 and M >0, we can
proceed in the same way using now (2.5).
(c) Whenever £<0, scaling the variable as x - x/(n + ) in relation (2.3) we get

Tn . L;(f) R Lia_—q—l) x/(n .
0 0) L0 10) g Lol

It only remains to use (1.9) and (2.4) to reach the result.
If ¢ =0 and M >0, proceeding as above and using (2.5) it follows that

T, ' _ _
lim W = x 21,2v/x) — (0 + 1) x~ D2, (24/%).

n—o
Now, using

200271 J,(2) = T, 1(2) + Jui1(2) (2.10)
(see, [13, formula (1.71.5)]), we have the result.

(d) In the same way as in (c), scaling the variable as x— (n + j)x in relation (2.1),
dividing by Lﬁ,‘”l)((n +j)x) and using (1.10) and lim, ¢, = 1, the result arises. O

3. Asymptotics of Sobolev orthogonal polynomials S,

In this section, first of all, we will obtain the strong asymptotics of S, on the
positive semiaxis and analogues of the Mehler—Heine and Plancherel-Rotach type
asymptotic formulas for the Sobolev polynomials.

If we look for analytic properties of the Sobolev orthogonal polynomials S, we
have to pay attention to the polynomials on the left-hand side of (2.6), that is

Vi(x) = L (x) — ¢y L (x) = LD (x) — d, o L7, (x), n>0,

n n—1 n n

with c.; =0=4d_,, (31)

where the last equality is a consequence of (1.3) and the relation between
the coefficients ¢, and d,. We can observe that the polynomials V), are, in
some sense, close to the polynomials 7, namely ¥, is a primitive of —7),_1, i.e.,

Vo(x) = =T1 ().
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First, we give the strong asymptotics of S, on (0,4 00). In order to do this, we will
use several analytic properties of polynomials V). Notice that, to establish
Proposition 2.4 it was only necessary to know the asymptotic behaviour of the
sequence {d,} and of the corresponding Laguerre polynomials involved in the
algebraic relation: in the case of 7, they are the Laguerre polynomials with
parameter o + 1 and in the case of V), the Laguerre polynomials with parameter o.

Theorem 3.1. For o> — 1, we have

Sy(x)

o = ¢ VR v + 0

uniformly on compact subsets of (0,4 o).

Proof. From (2.6) and (3.1)
Sn(x) = Viu(X) + ap—1Sn-1(x) (3.2)

SO,

Sux) _ Valy) (=N S )
/234~ ppj2—3a T el (n— 1)0(/2—3/4'

Dividing in (3.1) by n*/>~3/% and taking into account Proposition 1.1(e) and (2.4),
we have that {V,(x)/n*?>73/4} is uniformly bounded on compact sets of (0,+c0).
Since @,_1(=1)**3* 5.ae(0,1), standard arguments yield that {S,,(x)/n*/>73/4}, is
also uniformly bounded.

On the other hand, using Proposition 1.1(e) and Lemma 2.1(c), it can be deduced
that if £<0,

Valx) Ly (x)
n(a—l)/z - n(z—l)/z
and if £ =0

Vax) LY (x)
ne-072 ~ p=1)/2

+ 0%

+0(n3Y),

where the bound for the remainder holds uniformly on compact subsets of (0,4 co),
for all £<0.
Finally, observe that

Sp(x)  Vi(x) a1 (n—1\"D? S, ()
( > (n

W02~ pa-1)/2 (n— 1)1/4 n _ 1)0(/2—3/4
_ Va(x) 14y Ly () “1/4
= 2 +0n ") = pREEYE + 0 ')

uniformly on compact subsets of (0,4 c0).
Using (1.5), the theorem follows. [
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As we mention in Section 2, we can express the polynomials S, in terms of the
Laguerre polynomials with parameter o, that is, using (3.2) in a recursive way and
taking into account (3.1) we obtain

Z b V" ’ Z b n 1 _L n—i— IL;(1 >z 1( ))’ n=0, (3'3)

where b") = [1-; @u;and bl = 1.
Moreover, from (2.7) we have
—1
lim b" (ﬂ> =d for all i. (3.4)
n—o 2
Next, we obtain further asymptotic results for the Sobolev orthogonal
polynomials S),. Before, we want to remark that for the case corresponding to ¢ =
M =0, that is, duy = du, = x*e *dx, a> — 1, Mehler—Heine type formula and
Plancherel-Rotach type exterior asymptotics were obtained in Theorem 5 of [6], in
other framework. Here, we include this case for completeness.
First, we give the following technical result:

Lemma 3.2. There exist constants C and r with C>1 and 0<r<1 such that the
coefficients b\" in (3.3) verify 0<b" < C ¥ for all n>0 and 0<i<n.

Proof. From Lemma 2.2 we know that a,>0 and lim, a, = a<1, then there exists
re(a,1) such that 0<a,<r<1 for all n=ny. Therefore, whenever 1<i<n — ny,

bE") <r" and for the remaining values of i, taking M = max{l,ao,a, ...,y 1}, We
have
n—nop i . . M no
n) — H nj H an_j<l"nﬂ10Mhn+l10 <P L (_) )
j=1 J=n—np+1 r

The result follows with C = (¥)™. [0

Theorem 3.3. Let o> — 1, the polynomials S, orthogonal with respect to the inner
product (1.1) satisfy

(a) A Mehler—Heine type formula. It holds: if £<0,

i Su(x/n) d(é)x’“/zJa(Z\/)_c),

n—w prl/2 7 1 —q¢g
if E=0and M >0,
lim Su(x/n) 1

now pt-l T 1—g

and, if E =M =0,
lim Sn(x/n):_l DR 2V,

n—ow  ptl l1—a
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where a and d(&) are given by (2.7) and (2.4), respectively, and
$(6) = X EDRY, L (2VR) = (o 1Dx (20, (3.5)

All the limits hold uniformly on compact subsets of C.
(b) Plancherel-Rotach type exterior asymptotics. It holds

im Sy (nx) _ p(52) + 1
o [ x) () +a

uniformly on compact subsets of C\[0, 4] where ¢ and a are given by (1.8) and (2.7),
respectively.

Proof. (a) From (3.3), we have

nfl//’; Zb - Luitx/n) f/é” =D vnilx/n). (3.6)

i=0

Whenever ¢ <0, dividing by n*~!/2
(1.9) and (2.4), we deduce that

tim POLO L) ey, o), (3.)

holds uniformly on compact sets of C and uniformly on je Nu{0} and therefore
Vui(x/n)

in formula (3.1) evaluated at x/(n + j), and using

n— oo

: _ —a/2
nll,n; 1z d(&)x"J,(2v/x),
holds uniformly on compact sets of C and uniformly on i€ {0, 1, ..., n}.

Given a compact set K<C, because of this last result and Lemma 3.2, there
exists a constant D, depending only on K, such that |v,;(x/n)|<Dr' for i =0, ...,n
and xe K. Therefore, by Lebesgue’s dominated convergence theorem, (3.7) and (3.4),
we have

n 00
lim Z vni(x/n) = Z lim v,;(x/n) = —d(&)x 2 ,(2v/x) Z a
"0 =0 i=0

uniformly on compact subsets of C and the result follows.
Whenever ¢ = 0, formula (3.7) takes the form

lim Y25/ 47) xR (2Vx) = (e + D)X *2T,(2vx), M >0,

n— oo n“*l

Z i

llm w — x*(i*l)/z.]“il(2\/})’ M — O.
n— oo

Now we can conclude the proof in the same way as we did in the case &<0.
(b) From (3.3) we can write

755()(”) =3 B L’Z;)"(”x), xeC\[0,4].
Ly (nx) =5 Ly (nx)
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The polynomials V), satisfy the following Plancherel-Rotach type exterior
asymptotics
Ve ' -2\
lim MO )((n %) _ 1+ (p(x)
" Ly (7))

uniformly on compact subsets of C\[0,4] and uniformly on jeNuw{0}. This is a
simple consequence of (1.10) and (3.1).

Now, handling in the same way as in (a) and using (1.7), we can deduce

= . (3.8)

- | " Vo (nx) L@
lim Z bf‘n)M: nhﬁn»i Z bl(_n) wi(nx) L,”;(nx)

oo L L () = LY (nx) LY (nx)
_ i lim b(") Vn*i(nx) L;(qa—)i(nx)
< n— o !

L (nx) LY (nx)

n—i

(1 +<p(x;2)l> i;(ﬁ:lz))

uniformly on compact subsets of C\[0,4], and thus, the result follows. [

The above theorem allows us to obtain additional results about asymptotic
properties of zeros and critical points of Sobolev polynomials S,. First, recall that S,
has n different, real zeros, and at most one of them is outside (0, + o0 ), they interlace

with those of Lﬁl“) and the zeros of ), with those of T,,_; (for more information about
location of these zeros, see [10]). Moreover, from Theorem 4.11 in [11], it follows that
they accumulate on {¢}u[0,4c0) when M >0 and in [0,+0c0) when M = 0.

Corollary 3.4. For o> — 1, denote with j,; the ith positive zero of the Bessel function
Ju(x). Let {xn;}r, be the zeros in increasing order of the polynomial S, orthogonal

with respect to the inner product (1.1) and {)Zn,l-};':—f be the critical points of S,,. Then,
(a) If ¢<0, we have

2 2
. i . - Jo+1,i
lim nx,;, =—- and Ilim »nX,;, = .
n— oo ’ n— oo ’ 4
(b) If ¢ =0 and M >0, we have
lim nx,; = S,
n— oo
a2t
lim n%,; =0 and lim n%,; =21 [>2,
n— o ’ n— 0 ’ 4

where s, denotes the ith real zero of function s(x) defined in (3.5).
(c) If ¢ = M =0, we have

2
Joz—l,i

2
. . ~ ]rx‘i
lim nx,; = and lim nX,; ===,
n— oo ! n— oo ’ 4

where three cases are possible:
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o Jf —1<u<0, (that is —2<o— 1< —1) j,_1,1 is any of the two purely imaginary
zeros of J,—1(x) and, for i=2, j,_1; is the (i — 1)th positive real zero of J,_(x).

® [fou=0,j,11=j-11=0and, for i=2, j_;is the (i — 1)th positive real zero of
J_1 (X)

® [fu>0, j,_1,is the ith positive real zero of J,_1(x).

Proof. (a) The result for the zeros is a consequence of Theorem 3.3(a) and Hurwitz’s
theorem. Concerning the critical points, since we have uniform convergence in the
Mehler—Heine type formula (Theorem 3.3(a)), taking derivatives and using proper-
ties of Bessel functions ([13, Section 1.7]) we get

S/ Ay
R e A

uniformly on compact subsets of C, which yields the result.

(b) Denote g,(x) = x*2J,(2v/x) = 3% ur&%a xeC. From the definition of
s(x) (see (3.5) and (2.10)), we can write
N1 (=)

s(x)=—ga(x)—xga+1<x):; it T(i+a+1)

for o> — 1 and xeC.
Observe that, if xe(—o0,0), then g,(x)>0, limy,_o g,(x)=+c0 and
lim,, o s(x) = +o0.
Using formula (1.71.5) in [13] we have 5'(x) = xg,42(x), xeC and therefore s(x) is
a decreasing function on (—o0,0). Since 5(0) <0, we have that s(x) has only one
negative zero. Moreover, because the positive zeros of J,(x) interlace with those of
Jy+1(x), we can deduce that there is precisely one zero of s(x) between two
consecutive positive zeros of J,41(2/x).
Now, again by Hurwitz’s theorem the result for the zeros follows. Finally, we have
S (x/n) 1 1

l' _ = / =
ninolo n* l—aS(X) 1—a

X2 T, (2V/x)

uniformly on compact subsets of C, which implies the result.
(c) It can be obtained in a similar way as we did in (a) (see also Proposition 4 and
Remark 2 in [6]). O

Remark. The existence of a negative zero of S, is an interesting problem (see, for
example, [10, Section 5]). Here, we have found the range of values of the parameters
o, & and M for which the polynomials S, have a negative zero for n sufficiently
large, i.e.:

® The polynomials S, have one negative zero for n sufficiently large if and only if
either a> — 1, ¢ =0, and M >0 or —1<a<0and = M = 0.
® Moreover, the critical points of S, for n sufficiently large lie on [0, +00).



92 M. Alfaro et al. | Journal of Approximation Theory 122 (2003) 79-96

Finally, observe that, i a fixed positive integer, the zeros of .S, satisfy lim,, x,; = 0;
more precisely x,;, = O(1/n). Even, whenever S, has a negative zero x,;, lim, x,; = 0.

In order to illustrate these analytic results, we show numerically the behaviour of
the first zero, x,;, of S, in the cases of Corollary 3.4 where the nonlinear
recurrence relation satisfied by ¢, (formula (2.8)) and a, (formula (4.7) in [11]) have
been used.
For better reading we have rounded the numerical results in the case (c) to six digits
and we also eliminated the column x,; for « = 0, see Table 1.

Using the zero distribution of the orthonormal Laguerre polynomials lf,“) and the
nth root asymptotics for the scaled l,(f) (nx) polynomials (see [14,15]), and Theorem
3.3, the asymptotic distribution of the contracted zeros and the nth root asymptotics
for the scaled Sobolev polynomials can be derived:

Corollary 3.5. (a) The contracted zeros of S,, =, accumulate on [0,4] and they have
the same asymptotic distribution as the contracted zeros of the orthonormal Laguerre

polynomials 1Y), that is, it has density dv(x) = 1, /[©==>dx.
(b) The formula

4
lim |, (nx)|"/" = exp{l —l—/ log |x — y| dv(y)}
" 0

is true uniformly on compact subsets of C\[0,4].

Remark. For monic Sobolev polynomials 3\ we have

hm |S (nx)|l/”exp{ /log|x yM/ dy}

uniformly on compact subsets of C\[0,4] or, equivalently,

1 — I
lim — |S,(2nx)|"/" = exp{ log |x — y| dy}
n 2n T Jo

uniformly on compact subsets of C\[0,2].

Observe that this is exactly the result for monic Laguerre—Sobolev polynomials of
type I obtained in [12, Theorem 2.2], using potential theory. (In all the results in [12]
concerned with nth root asymptotic, the locally uniformly convergence holds in
C\[0,2] instead of in [0, 2]).

4. Upper bound for Sobolev orthogonal polynomials S,

To obtain an upper bound for Sobolev orthogonal polynomials our starting point
will be formula (3.3). A global estimate for classical Laguerre polynomials with
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Table 1
(a)a=-0.5 ¢=-10, 2=1.

M=0 M=2
n nXp,1 Xn,1 nXp 1 Xn,1
50 0.5985025263 0.0119700505 0.6560458759 0.0131209175
100 0.6022670343 0.0060226703 0.6421427906 0.0064214279
150 0.6042891938 0.0040285946 0.6366175985 0.0042441173
200 0.6056173146 0.0030280866 0.6335134224 0.0031675671
250 0.6065803700 0.0024263219 0.6314766976 0.0025259068

0.6168502751 0.6168502751

2 2

L Jal

4

b ¢é=0, M=2, A1=1.

o= -0.5 =25
n nXp,1 Xn,1 nXp,1 Xn,1
50 —0.9995290524 —0.0199905810 —4.4617547547 —0.0892350951
100 —1.0118720710 —0.0101187207 —4.3961517653 —0.0439615177
150 —1.0191664985 —0.0067944433 —4.3745120007 —0.0291634133
200 —1.0240655338 —0.0051203277 —4.3637453016 —0.0218187265
250 —1.0276502314 —0.0041106009 —4.3573033494 —0.0174292134

—1.066582516 —4.3325842295

So,1 So,1
©é=M=0, A=1.

o= —0.5 =0 =25
n nxp| Xn,1 nxy | nXp,| Xn,1
50 —0.366308 —0.007326 1.41153 107" 4.98876 0.09978
100 —0.362992 —0.003630 3.56416 1040 5.01701 0.05017
150 —-0.361917 —0.002413 6.74969 107! 5.02696 0.03351
200 —0.361384 —0.001807 1.13621 1078! 5.03204 0.02516
250 —0.361066 —0.001444 1.79310 10102 5.03512 0.02014

—0.359807 0 5.04768

’iu ./'371.1 @

4 4 4

respect to n, x, and o is known (see formulas (22.14.13) and (22.14.14) in [1]): For
x=20,n>0 and > — 1, the inequality

LY ()| < A(n, o) €, (4.1)
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where
I 1
% if a0,
A(n,o) = ' (4.2)
I'n+oa+1) .
2 TET ) e 1<a<0,
nll'(o+ 1)
holds.

Therefore, we need upper estimates for the coefficients bl(") (that is, for a,) and ¢,.
This is done in the next lemma.

Lemma 4.1. For n>=1, the coefficients ¢, and a, in Lemma 2.2 satisfy

n+1+a o—¢
< <2+ ——, nxl, 4.
2(n+1)+oc—é<c7< t " (43)
and
o—¢ 2n4o—¢&
n<|2 - , n=l. 4.4
“<< T ><2+A>n+a—s " (44)

Proof. From recurrence relation (2.8) for the parameters c,, since ¢, >0 for every n,
we get inequalities (4.3).
On the other hand, recall that the coefficients a, in formula (2.6) are defined by
LE’az) 2 .
a, = ¢, HHS l‘l‘;‘(‘. As a consequence of the extremal property of the norms of the monic
nlls
orthogonal polynomials, we have

2 o) (12 2
1Salls = L1y + A Tty 221,

which, by the definition of ¢,, (see (2.2)), and (1.2) leads to

Salls Tl
||L” ||,Uu ||Ln ||ﬂ0 o
L2

Thus, from (4.3) and (4.5), we obtain (14522 )71 and so (4.4) holds. [

HS”H§ = 2n+a—¢&
A global estimate for Sobolev orthogonal polynomials is now deduced:
Theorem 4.2. For x>0, o> — 1 and n>=1 we have

[Su(x)| < Cfu(r)A(n, o) €2,
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where

. —&)? .
C:{3+a—f if a>¢, _{éiﬁiﬁg if o>,

S

Fr—1,
Su(r) = { L l{r r;él and A(n,o) is given by (4.2).
ifr

Proof. Observe that, using b( = aob formula (3.3) can be written in the form

n—1»
n—2

Su(x) = 37 BLY (%) = eumict LY, (x)) + B (L (x) = co + a).
i=0
Then, as ay = ¢y,

n—=2
)< B ILY ()] + i [LY, (x)]) + B LY ()], (4.6)
i=0

It is easy to prove that, for a> —1 and i =0,1,....,n, A(n—i,a)<A(n,) and
therefore, by (4.1), |L*.(x)| < A(n,x)e*/> which leads to

i=0

n—2
x)|< [Z b (1 + cuir) + 0", | A(n, a)e.

From (4.3), analysing separately the cases « — £<0 (that is, —1 <a<¢<0) and o —
=0, we get

24+a—¢ if ax=é,

p<c= . .

2 if a<<é

In a similar way, from (4.4) we deduce that

<2+°‘*§)2 1 >
a,<r= { prvrra il LS

4 : '
v if O(Sf

It suffices to write C = 1 + ¢ and the result follows. [

In some particular cases the upper estimate for the Sobolev polynomials S, can be
improved. One of them occurs when M = 0 in the inner product (1.1), that is du; =

de In this situation, integrating in formula (2.1) with respect to the measure

Uy, we have

c,,/o Lnﬁl)(x)dul(x):/o L (x) duy (x), n=>1.
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Using Rodrigues’ formula for Laguerre polynomials and after integration by parts
n — 1 times, it can be derived, see ([11]),

© o0 nta ,—x
| e = [

(x—¢)"
This implies that, for every n>1, ¢, <1. (Observe that ¢, = 1 only if £ = 0).
As a consequence, we have a,<1 and b/ <1 for every n=1and i=0,...,n— 1.

Thus, the upper estimate for S, in Theorem 4.2 becomes
1S,(x)| < (21— 1)A(n, o).

Improvements of the estimates for |L*(x)| lead to improvements of the ones for
|S,(x)|, according to formula (4.6) (see for instance [5]).
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